ULTRAMETRICITY IN BIOINFORMATION SYSTEMS

Branko Dragovich Institute of Physics, Belgrade, Serbia <u>http://ipb.ac.rs/~dragovich</u> dragovich@ipb.ac.rs

> *TABIS2013 Belgrade, 21.09.2013*

From DNA to proteins using the GENETIC CODE

Second letter								
U		U	С	А	G			
First letter	U	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G		
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG GIn	CGU CGC CGA CGG	U C A G	Third	
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGG Arg	U C A G	letter	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAG GIu	GGU GGC GGA GGG	U C A G		

Table of the GENETIC CODE

Second letter							
		U C		А	G		
First letter	U	UUU UUC UUA UUG } Leu	UCU UCC UCA UCG	UAU UAC UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAA CAG GIn	CGU CGC CGA CGG		Thing
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU AGC AGA AGG Arg		
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG Glu	GGU GGC GGA GGG	U C A G	

Another representation of the GENETIC CODE

Motivations to Model the Genetic Code

- Genetic code is a map from 64 elements (codons) to the set of 21 elements (20 amino acids and 1 stop signal).
- There is a huge number of possibilities for genetic coding, but exists in living organisms only one genetic code and about 20 its slight modifications.
- What is the rule behind the Genetic Code?
- What is structure of the space of codons?
- What was origin of the genetic code? What was its evolution so far? What is its possible evolution in the future?

Modeling of the Genetic Code

- G. Gamow (1904-1968): 3-nucleotide codons, diamond code (1954)
- F. Crick (1916-2004): comma-free code (1957)
- Yu. Rumer (1901-1985): first 2 nucleotides emphasized (1966), ...
- Scherbak, Rakocevic, Misic,...
- J. Hornos and Y. Hornos (1993), Forger and Sachse (2000)
- Frappat, Sciarrino and Sorba (1998)
- Trifonov,...,Petoukhov, ...
- **p-adic approach**: B. Dragovich and A. Dragovich (2006), Khrennikov and Kozyrev (2007), Bradley (2007)

p-Adic approach:Ultrametric (Tree) Structure of Codons

Second letter							
		U	С	А	G		
First letter	U	UUU UUC UUA UUA Leu	UCU UCC UCA UCG	UAU UAC Tyr UAA Stop UAG Stop	UGU UGC UGA UGG Trp	U C A G	
	С	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC His CAA CAG GIn	CGU CGC CGA CGG	U C A G	Third
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG	AGU AGC AGA AGG Arg	U C A G	letter
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG Glu	GGU GGC GGA GGG	U C A G	

p-Adic approach:Ultrametric Tree of Codons

p-Adic approach: ultrametric spaces

• metric space: Maurice Frechet (1906)

- word "ultrametric" by Marc Krasner (1944)
- p-adic spaces: Kurt Hensel (1897)
- ultrametric distance in Taxonomi: Karl Linne (1735)
- hierachical structures in proteins
- genetic code

Kurt Hensel (1861 – 1941)

p-Adic Distance Between Integers

Let a and b be two integers, and let
a-b =c =p^k m, where p is a prime number, k is not negative integer, and m is not divisible by
p. Then p-adic distance is:

$$d_{p}(a,b) = |a-b|_{p} = |c|_{p} = |p^{k}m|_{p} = p^{-k}$$

which is ultrametric, i.e.

$$d_{p}(x, y) \le \max \left\{ d_{p}(x, z), d_{p}(z, y) \right\} \le d_{p}(x, z) + d_{p}(z, y)$$

p-Adic Space of Codons

5-adic natural numbers with three digits different from zero: $C[64] = \{n_0 + n_1 5 + n_2 5^2 : n_i = 1, 2, 3, 4\}$ $n_0 + n_1 5 + n_2 5^2 \equiv n_0 n_1 n_2$

C (cytosine) = 1, A (adenine) = 2, T (thymine) = U (uracil) = 3, G (guanine) = 4 (0 = absence of nucleotide)

5-adic distance between codons a and b is

$$d_5(a,b) = |a_0 + a_1 5 + a_2 5^2 - b_0 - b_1 5 - b_2 5^2|_{5}$$

When codons a and b are different, there are 3 possibilities:

$$\begin{aligned} d_5(a,b) &= 1 \Leftarrow a_0 \neq b_0 \\ d_5(a,b) &= \frac{1}{5} \Leftarrow a_0 = b_0, a_1 = b_1 \\ d_5(a,b) &= \frac{1}{25} \Leftarrow a_0 = b_0, a_1 = b_1, a_2 \neq b_2 \end{aligned}$$

With respect to smallest (1/25) 5-adic distance 64 codons clasterize to 16 quadruplets.

2-adic distance between **5-adic quadruplet codons**

• Denote codons inside 5-adic quadruplet by a, b, c, d . Then 2-adic distance is:

$$d_2(a,c) = |(3-1)5^2|_2 = \frac{1}{2}$$
$$d_2(b,d) = |(4-2)5^2|_2 = \frac{1}{2}$$

Now every quadruplet decays into two 2-adic doublets. These 32 doublets make basic structure of space of 64 codons.

Code of Vertebral Mitochondria

111 CCC	Pro	211 ACC	Thr	311 UCC	Ser	411 GCC	Ala
112 CCA	Pro	212 ACA	Thr	312 UCA	Ser	412 GCA	Ala
113 CCU	Pro	213 ACU	Thr	313 UCU	Ser	413 GCU	Ala
114 CCG	Pro	214 ACG	Thr	314 UCG	Ser	414 GCG	Ala
121 CAC	His	221 AAC	Asn	321 UAC	Tyr	421 GAC	Asp
122 CAA	Gln	222 AAA	Lys	322 UAA	Ter	422 GAA	Glu
123 CAU	His	223 AAU	Asn	323 UAU	Tyr	423 GAU	Asp
124 CAG	Gln	224 AAG	Lys	324 UAG	Ter	424 GAG	Glu
131 CUC	Leu	231 AUC	Ile	331 UUC	Phe	431 GUC	Val
132 CUA	Leu	232 AUA	Met	332 UUA	Leu	432 GUA	Val
133 CUU	Leu	233 AUU	Ile	33 3 UUU	Phe	433 GUU	Val
134 CUG	Leu	234 AUG	Met	334 UUG	Leu	434 GUG	Val
141 CGC	Arg	241 AGC	Ser	341 UGC	Cys	441 GGC	Gly
142 CGA	Arg	242 AGA	Ter	342 UGA	Trp	442 GGA	Gly
143 CGU	Arg	243 AGU	Ser	343 UGU	Cys	443 GGU	Gly
144 CGG	Arg	244 AGG	Ter	344 UGG	Trp	444 GGG	Gly

5-adic distances: 1/25, 1/5, 1 2-adic distances: 1/2, 1

p-Adic Properties of the Vertebral Mitochondrial Code

- T-symmetry: doublets-doublets and quadruplets-quadruplets invariance
- 5-Adic distance gives quadruplets
- 2-Adic distance inside quadruplets gives doublets
- Degeneration of the genetic code has p-adic structure
- p-Adic degeneracy principle: Codons code amino acids and stop signals by doublets which are result of combined 5-adic and 2-adic distances
- Modern assignment of codon doublets to particular amino acids is a result of coevolution of the genetic code and amino acids: single nucleotide code 4 amino acids, dinucleotide code 16 amino acids, trinucleotide code 20 amino acids.
- Other (19) codes may be regarded as slight modifications of the Code of Vertebral Mitochondria

Examples of p-Adic Codon Spaces $\Gamma_p[(p-1)^m]$

1-nucleotide codon space: p=5, m =1
2-nucleotide codon space: p=5, m =2
3-nucleotide codon space: p=5, m =3

Possible evolution of codon space:

 $\Gamma_5(4) \rightarrow \Gamma_5(4^2) \rightarrow \Gamma_5(4^3) = \Gamma_5(64)$

CONCLUSIONS

- Codon space has ultrametric structure.
- p-Adic distance plays important role in the genetic code.
- 4 nucleotides are structural elements of 5-adic space of 64 codons.
- Codons clasterize according 5-adic and 2-adic distances.
- Degeneration of the Genetic Code has p-adic structure.
- This p-adic approach can be extended to some other aspects of genomics and proteomics.